Pintu dan Lampu kamar Otomatis



 1. Tujuan [Kembali]

- Dapat memahami cara kerja sensor LDR dan INFRARED

- Dapat mengaplikasikan sensor  pada rangkaian.

2. Alat dan Bahan [Kembali]

2.1 Alat

1. Power supply



Power Supply atau dalam bahasa Indonesia disebut dengan Catu Daya adalah suatu alat listrik yang dapat menyediakan energi listrik untuk perangkat listrik ataupun elektronika lainnya.

2. Voltmeter



Berfungsi untuk mengukur besar tegangan listrik,dimana untuk penyusunannya dilakukan secara pararel terhadap posisi komponen.

3. Alternator


Alternator ini merupakan generator kebalikan dari motor starter, jika motor starter merubah dari energi lisrik menjadi energi gerak maka sistem pengisian merubah energi gerak menjadi energi listrik. Begitu juga dengan komponennya, jika pada motor starter yang berfungsi untuk membangkitkan medan magnet adalah yang diam (dalam hal ini field coil), maka pada sistem pengisian yang berfungsi untuk membangkitkan medan magnet adalah yang berputar (rotor).


2.2 Bahan

1. Resistor

 


Resistor merupakan salah satu komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai terminal antara dua komponen elektronika. Tegangan pada suatu resistor sebanding dengan arus yang melewatinya (V=I R).

Spesifikasi

3 Buah resistor 10k

1 buah resistor 90k

1 buah resistor 1k

Datasheet

2. Transistor

   


Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Pada rangkaian water level sensor ini transistor hanya digunakan sebagai saklar, dengan adanya arus di base maka transistor akan "on" sehingga akan ada arus dari kolektor ke emitor.

Fitur:
1. DC Current gain(hfe) maksimal 800
2. Arus Collector kontinu(Ic) 100mA
3. Tegangan Base-Emitter(Vbe) 6V
4. Arus Base(Ib) maksimal 5mA

Transistor sebagai penguat Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base. DC Current Gain = Collector Current (Ic) / Base Current (Ib)

Datasheet 







     

3. LED

LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

 


Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

Datasheet



4. Op-AMP (LM 324)

IC LM324 merupakan IC Operational Amplifier, IC ini mempunyai 4 buah op-amp yang berfungsi sebagai comparator. IC ini mempunyai tegangan kerja antara +5 V sampai +15V untuk +Vcc dan -5V sampai -15V untuk -Vcc. Adapun definisi dari masing-masing pin IC LM324 adalah sebagai berikut :

 


a. Pin 1,7,8,14 (Output)
Merupakan sinyal output.
b. Pin 2,6,9,13 (Inverting Input)
Semua sinyal input yang berada di pin ini akan mempunyai output yang berkebalikan dari input.
c. Pin 3,5,10,12 (Non-inverting input)
Semua sinyal input yang berada di pin ini akan mempunyai output yang sama dengan input (tidak berkebalikan).
d. Pin 4 (+Vcc)
Pin ini dapat beroperasi pada tegangan antara +5 Volt sampai +15 Volt.
e. Pin 11 (-Vcc)
Pin ini dapat beroperasi pada tegangan antara -5 Volt sampai -15 Volt

 5. LDR

 

Light Dependent Resistor atau disingkat dengan LDR adalah jenis Resistor yang nilai hambatan atau nilai resistansinya tergantung pada intensitas cahaya yang diterimanya. Nilai Hambatan LDR akan menurun pada saat cahaya terang dan nilai Hambatannya akan menjadi tinggi jika dalam kondisi gelap. Dengan kata lain, fungsi LDR (Light Dependent Resistor) adalah untuk menghantarkan arus listrik jika menerima sejumlah intensitas cahaya (Kondisi Terang) dan menghambat arus listrik dalam kondisi gelap.
Naik turunnya nilai Hambatan akan sebanding dengan jumlah cahaya yang diterimanya. Pada umumnya, Nilai Hambatan LDR akan mencapai 200 Kilo Ohm (kΩ) pada kondisi gelap dan menurun menjadi 500 Ohm (Ω) pada Kondisi Cahaya Terang.

LDR (Light Dependent Resistor) yang merupakan Komponen Elektronika peka cahaya ini sering digunakan atau diaplikasikan dalam Rangkaian Elektronika sebagai sensor pada Lampu Penerang Jalan, Lampu Kamar Tidur, Rangkaian Anti Maling, Shutter Kamera, Alarm dan lain sebagainya.





 

Konfigurasi pin:

 

Pin 1 : Electrical contact

Pin 2 : Electrical contact

 

Catatan : Sensor ini sama seperti resistor sehingga peletakkan pinout pada rangkaian tidak bermasalah jika terbalik 

 

Grafik Respon

 



Spesifikasi



6. Sensor Infrared

Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

Konfigurasi pin infrared:

Konfigurasi pin infra red (IR) receiver atau penerima infra merah tipe TSOP adalah:

a. output (Out),

b. Vs (VCC +5 volt DC),

c. Ground (GND)

Grafik Respon Sensor Infrared:

Datasheet Infrared:


7. Logicstate


Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya

 

Komponen Output

a.         Relay



Konfigurasi Pin








Spesifikasi

b. Motor DC



 

Motor DC adalah suatu peramgkat yang mengubah energi listrik menjadi energi kinetik (motion).

Grafik

      Spesifikasi

        

           

 

c. Lampu

 


Lampu pijar adalah sumber cahaya buatan yang dihasilkan melalui penyaluran arus listrik melalui filamen yang kemudian memanas dan menghasilkan cahaya.[1] Kaca yang menyelubungi filamen panas tersebut menghalangi udara untuk berhubungan dengannya sehingga filamen tidak akan langsung rusak akibat teroksidasi.


3. Dasar Teori [Kembali]

1. Resistor

 


Resistor merupakan salah satu komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai terminal antara dua komponen elektronika. Tegangan pada suatu resistor sebanding dengan arus yang melewatinya (V=I R).


Cara menghitung nilai resistor


Tabel warna




Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)

Masukkan angka langsung dari kode warna Gelang ke-2

Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)

Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1

Gelang ke 2 : Hitam = 0

Gelang ke 3 : Hijau   = 5 nol dibelakang angka gelang ke-2; atau kalikan 105

Gelang ke 4 : Perak  = Toleransi 10%

Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

Parapel dan Seri


2. OP-AMP

Berikut dibawah ini adalah Simbol dan bentuk IC Op-Amp pada umumnya. 

 



Terminal yang terdapat pada Simbol Op-Amp (Operational Amplifier/penguat operasional) diantaranya adalah :

Masukan non-pembalik (Non-Inverting) +

Masukan pembalik (Inverting) –

Keluaran Vout

Catu daya positif +V

Catu daya negatif –V


Karakteristik Op-Amp (Operational Amplifier)

Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup. Umpan balik negatif ini akan menyebabkan penguatan atau gain menjadi berkurang dan menghasilkan penguatan yang dapat diukur serta dapat dikendalikan. Tujuan pengurangan Gain dari Op-Amp ini adalah untuk menghindari terjadinya Noise yang berlebihan dan juga untuk menghindari respon yang tidak diinginkan. Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.

 

Secara umum, Operational Amplifier (Op-Amp) yang ideal memiliki karakteristik sebagai berikut :

Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)

Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)

Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)

Impedansi Output (Output Impedance ) atau Zout = 0 (nol)

Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)

Karakteristik tidak berubah dengan suhu





3. LDR

LDR adalah fotokonduktivitas, yang tidak lain adalah fenomena optik. Ketika cahaya diserap oleh material maka konduktivitas material berkurang. Ketika cahaya jatuh ke LDR, maka elektron di pita valensi material tertarik ke pita konduksi. Tetapi, foton dalam cahaya datang harus memiliki energi yang lebih tinggi daripada celah pita material untuk membuat elektron melompat dari satu pita ke pita lain (kelambu ke konduksi)

4.Transistor adalah komponen elektronika yang terbuat dari dari bahan semi konduktor jenis N dan jenis P. Transistor  memiliki 3 kaki yaitu: basis (B)kolektor (C) dan emitor (E). Berdasarkan susunan semikonduktor yang membentuknya, transistor dibedakan menjadi dua tipe, yaitu transistor jenis PNP dan transistor jenis NPN. Untuk membadakan transistor PNP dan NPN dapat dari arah panah pada kaki emitornya. Pada transistor PNP anak panah mengarah ke dalam dan pada transistor NPN arah panahnya mengarah ke luar.


Simbol Transistor :








dimana, iC = perubahan arus kolektor

 

iB = perubahan arus basis

 

hFE = arus yang dicapai


Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib


Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)

a.Transistor adalah komponen elektronika yang terbuat dari dari bahan semi konduktor jenis N dan jenis P. Transistor  memiliki 3 kaki yaitu: basis (B)kolektor (C) dan emitor (E). Berdasarkan susunan semikonduktor yang membentuknya, transistor dibedakan menjadi dua tipe, yaitu transistor jenis PNP dan transistor jenis NPN. Untuk membadakan transistor PNP dan NPN dapat dari arah panah pada kaki emitornya. Pada transistor PNP anak panah mengarah ke dalam dan pada transistor NPN arah panahnya mengarah ke luar.


Simbol Transistor :








dimana, iC = perubahan arus kolektor

 

iB = perubahan arus basis

 

hFE = arus yang dicapai


Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib


Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)


5. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.
Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

 Fitur:

 1. Tegangan pemicu (tegangan kumparan) 12V
 2. Arus pemicu 70mA
 3. Beban maksimum AC 10A @ 250 / 125V
 4. Maksimum baban DC 10A @ 30 / 28V
 5. Switching maksimum

6.Infrared Sensor

Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar. 

Komponen led inframerah atau infra red (IR) pada dasarnya adalah led yang memancarkan sinar infra merah dengan panjang gelombang 850nm. 

Infra red (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier). Bentuk dan Konfigurasi Pin IR Detector Photomodules TSOP

Prinsip Kerja sensor infrared:
Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.
Rangkaian dasar sensor infrared common emitter yang menggunakan led infrared dan fototransistor Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3

Keadaan Basis Mendapat Cahaya Infra Merah dan Berubah Menjadi Saklar (Switch Close) Secara Sesaat 
Grafik Respon Sensor Infrared:

Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter

7. Motor-DC

Prinsip Kerja Motor DC Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang). 

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.




Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

4. Percobaan [Kembali]

4.1 Prosedur percobaan

a.Siapkan semua alat dan bahan yang diperlukan dalam percobaan

b.baca setiap datasheet program

c. Pasangkan semua kompenen didalam rangkaian percobaan

d.Beri tegangan pada rangkaian 

e. Atur posisi ground

f. Jalankan rangkaian

 

 4.2 Prinsip rangkaian

    Pada saat Sensor Infrared mendeteksi ada objek (manusia) yang memasuki kamar maka sensor infrared akan berlogika 1 dan mengeluarkan output sebesar 12 volt. Kemudian output akan diperbesar sebanyak 1,1 kali sebelum tegangan mengalir menuju transistor saya memasang resistor sebesar 10k agar beban pada saat transistor menerima output tidak terlalu besar.

    Kemudian karena transistor menerima tegangan yang cukup (melebihi VBE) maka transistor aktif dan relay juga aktif.Karena relay aktif maka motor dc (sebagai pintu) akan aktif serta relay ke 2 juga ikut aktif.

    Pada rangkaian ini, LDR dan R1 sebagai pembagi tegangan serta Motor DC sebagai pintu yang akan otomatis bergerak ketika IR sensor mendeteksi benda. 

    Saat LDR tidak mendapakan cahaya (gelap) maka hambatan pada LDR semakin besar, yaitu >1M dan R1 kecil, sehingga tegangan dari baterai menjadi sangat kecil dan arusnya tidak dapat mengalir ke kaki basis Transistor Q1 dan Transistor Q2 dan kemudian tidak dapat mengaktifkan relay RL1 karena tidak ada arus atau tegangan yang lebih kecil dari yang diperlukan. 

    Saat LDR mendapatkan cahaya maka hambatannya menjadi kecil <100k sehingga tegangan dari baterai menjadi tidak banyak berkurang dan arusnya dapat mengalir ke kaki basis Transistor Q1 dan arus dari baterai dapat mengalir ke kaki kolektor Transistor Q1 yang kemudian arus dapat mengalir dari kaki emitor Transistor Q1 dan kemudian arus mengalir ke kaki basis Transistor Q2. Karena terdapat arus pada kaki basis Transistor Q2, maka arus dari baterai akan mengalir ke kaki kolektor Transistor Q2 dan arus keluar dari kaki emitor Transistor Q2. Arus ketika menuju kaki kolektor Transistor Q2 terlebih dahulu melewati relay sehingga mengaktifkan relay RL1 dan lampu menyala.

    Disisi lain, ketika sensor IR berlogika 0, maka tidak akan ada tegangan yang dioutputkan dan arus tidak akan mengalir ke relay RL2 untuk diaktifkan. Sedangkan ketika sensor IR berlogika 1, maka akan ada tegangan yang dioutputkan dan arus akan mengalir ke op-amp (Non-Inverting) dan tegangan akan diperkuat sehingga dapat menggerakkan Motor DC dan mengaktifkan relay RL2.

5. Rangkaian Simulasi [Kembali]

INFRARED DAN LDR OFF

INFRARED ON

INFRARED DAN LDR ON







6. Video [Kembali]





7. Download File [Kembali]

HTML

Rangkaian

Video

Datasheet LDR

Datasheet LED

Datasheet LM 324

Datasheet Transistor

Datasheet Resistor

Datasheet Relay

Datasheet Motor-DC

Datashet OP-amp

Datasheet Infrared Sensor

Library Infrared Sensor


Tidak ada komentar:

Posting Komentar